Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition
نویسندگان
چکیده
The canonical decomposition of higher-order tensors is a key tool in multilinear algebra. First we review the state of the art. Then we show that, under certain conditions, the problem can be rephrased as the simultaneous diagonalization, by equivalence or congruence, of a set of matrices. Necessary and sufficient conditions for the uniqueness of these simultaneous matrix decompositions are derived. In a next step, the problem can be translated into a simultaneous generalized Schur decomposition, with orthogonal unknowns [A.-J. van der Veen and A. Paulraj, IEEE Trans. Signal Process., 44 (1996), pp. 1136–1155]. A first-order perturbation analysis of the simultaneous generalized Schur decomposition is carried out. We discuss some computational techniques (including a new Jacobi algorithm) and illustrate their behavior by means of a number of numerical experiments.
منابع مشابه
Coupled rank-(Lm, Ln, •) block term decomposition by coupled block simultaneous generalized Schur decomposition
Coupled decompositions of multiple tensors are fundamental tools for multi-set data fusion. In this paper, we introduce a coupled version of the rank-(Lm, Ln, ·) block term decomposition (BTD), applicable to joint independent subspace analysis. We propose two algorithms for its computation based on a coupled block simultaneous generalized Schur decomposition scheme. Numerical results are given ...
متن کاملSymbolic computation of the Duggal transform
Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...
متن کاملSOLUTION OF FUZZY DIFFERENTIAL EQUATIONS UNDER GENERALIZED DIFFERENTIABILITY BY ADOMIAN DECOMPOSITION METHOD
Adomian decomposition method has been applied to solve many functional equations so far. In this article, we have used this method to solve the fuzzy differential equation under generalized differentiability. We interpret a fuzzy differential equation by using the strongly generalized differentiability. Also one concrete application for ordinary fuzzy differential equation with fuzzy input data...
متن کاملAccelerating the Composite Power System Planning by Benders Decomposition
This paper presents an application of Benders decomposition to deal with the complexities in the simultaneous Generation Expansion Planning (GEP) and Transmission Expansion Planning (TEP). Unlike the power system operation fields of study, the power system planning methods are not expected to be fast. However, it is always preferable to speed up computations to provide more analysis options for...
متن کاملGeneralized inverses of a normal matrix
The expressions for generalized inverses of a normal matrix are discussed by its Schur decomposition.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 26 شماره
صفحات -
تاریخ انتشار 2004